
DNSSEC: Trust along the chain 

 

Article by Alexander Venedyukhin, Lead Analyst at TCI 

 

 

 

Anti-spoofing mechanisms built into the “classic” domain name services are tied 

to the properties of the DNS exchange protocol, and therefore prevent only the 

most primitive attacks. For example, these mechanisms do not allow for 

counteracting active packet spoofing at the network transport layer, which means 

that any intermediate node can completely replace the addressing picture seen 

through DNS. The wide variety of threats in today’s global network calls for a 

universal security tool that protects name and address information regardless of 

the low-level properties of DNS and network transport. Such an add-on has been 

available for a long time – it is based on a digital signature and is called DNSSEC. 

  



Signature valid 

 

The main logic feature of DNSSEC is that this technology works at a different layer 

than the DNS protocols. Yes, DNSSEC keys and signatures are published in the 

same way as other DNS resource records, but the received data is authenticated 

outside the domain system. 

This means that authorized and authenticated addressing data within a given 

zone do not even need to be obtained through DNS. Most important is that they 

are accompanied by correct DNSSEC signatures, and the corresponding records 

can be received via any channel, not only a trusted one. This is a significant 

advantage when viewed from an application standpoint. For an application that 

can verify DNSSEC signatures by building a chain of trust from a local copy of the 

root key, it becomes less important whether an available source of DNS records, 

such as an access provider's resolver, is trusted. The same can be said about any 

intermediate node that could spoof information on the way from a server to a 

client: DNSSEC detects such spoofing. 

In the “classic” DNS, there are also safeguards based on similar algorithms (this is, 

first of all, TSIG), but they are available only to those nodes that have previously 

agreed on a shared secret. It is clear that this option is not suitable for public and 

open use, when an arbitrary node can contact DNS, since this node cannot know 

the secret key in advance. DNSSEC allows an "indefinite range" of client programs 

to effectively use the well-known public-key hierarchy scheme in which signature 

chains are built and the required keys can be securely obtained over an insecure 

channel. 

So, DNSSEC solves the problem of ensuring data integrity: a party that received 

data from DNS can check that this data has not been changed on the way from 

the authoritative server, and that this information is published in the domain zone 

by operator – someone who has access to the corresponding secret key(s) and 

thus can generate DNSSEC signatures that authenticate DNS records. In most 

practical cases, this is the domain zone registry. 

  



Algorithms 

 

Let’s take a look at how DNSSEC works using a simple example. Suppose the client 

needs to determine an IP address corresponding to the test.ru name. The test.ru 

zone is safe, that is, the name servers to which it is delegated support DNSSEC. 

DNSSEC is also supported in the higher zones (.ru and root zone). In order to 

obtain an IP address, one needs to perform a DNS search for an A Record (address 

Mapping record). The client resolver that supports DNSSEC will receive from DNS 

not only an A Record for test.ru, but also a number of signature values that certify 

the transferred values’ authenticity. The signatures are sent in additional DNS 

records called RRSIG. Public keys are required to verify signatures. The relying 

party obtains keys (except for the root key) from DNS as well. The public key sets 

correspond to domain zones. So, in the case of test.ru, the resolver must receive 

keys for the test.ru zone, for the .ru zone, and for the root zone. The required 

keys are passed in the DNSKEY records (DNSSEC has two types of keys: KSK for 

“key-signing key” and ZSK for “zone-signing key.” Further, for simplicity, these 

types are not distinguished, except for the root KSK). Key value records also get 

signed. This is critically important: a mechanism is needed to verify the 

authenticity of the key values. 

Authentication requires the transfer of trust across the entire hierarchical chain of 

the zones, which means that the .ru zone must contain data that make it possible 

to authenticate the keys received for the test.ru zone. Technically, the .ru zone in 

our example delegates administration rights to the test.ru zone. In DNSSEC, such 

delegation must be accompanied by trust transfer. By the way, if the delegation in 

this particular case did not occur, then the response to the request for the A 

Record for test.ru, along with all signatures, would have been sent by the .ru zone 

servers (of course, only if such a name is available in the zone). The same 

arrangement works for names like www.test.ru if they are located directly in the 

test.ru zone. 

Delegating in DNSSEC is just as important as in the “classic” DNS, but is arranged 

in a slightly different way. As a reminder, in DNS, the delegation is implemented 

by sending, in response to a request from a resolver (client), a list of authoritative 

server names that correspond to a given DNS zone. In the case of DNSSEC, the 

DNS delegating response is saved and works the same way. However, the list of 

servers in the delegating response is not certified by a signature, since trust is 



built in DNSSEC through cryptographic keys. Each standalone domain zone has its 

own set of DNSSEC signing keys because different registries are not required to 

use the same keys. Since the signatures within the zones are also isolated, the 

task arises of checking that the signatures that the client sees correspond to the 

domain zone registry’s keys, and have not been replaced on their way to the 

client. 

Indeed, suppose a malicious user intercepts all of the client’s DNS requests and 

can send arbitrary responses. In this case, the malicious user could generate their 

own sets of keys for test.ru, identify the signatures from these keys, and send the 

required data set, along with the correct signatures, to a client under attack. This, 

however, is a well-known problem inherent in almost all mass digital signature 

schemes. The DNS construction logic requires that the keys corresponding to a 

specific domain zone be published in it. So, to counter the above attack, DNSSEC 

uses a secure delegation mechanism: a fingerprint of the trusted public key of the 

delegated zone is placed in the delegating zone; a special DS record is used for 

this purpose. The key fingerprint value is signed using the delegating zone keys, 

which makes it possible to ensure that the key has not been tampered with. (The 

fingerprint is calculated using a cryptographic hash function, so tampering with 

the key and having the fingerprints match as a result will not work.) 

So, a signature is placed in the delegating zone certifying the delegated zone key 

fingerprint. The chain of trust is built as follows: having received a key from a 

particular zone, the resolver calculates its fingerprint and matches the value with 

the fingerprint received from the higher-level zone, which is certified by the 

signature. The process continues until it reaches the root key (KSK). Let’s go back 

to the example with test.ru and the A Record. The resolver receives a set of keys 

corresponding to the test.ru zone and checks to see that at least one of them 

matches the DS record for test.ru, which is located in the .ru zone (that is, in the 

zone that is one level higher). For the .ru zone, the steps are similar, but the DS 

record is already requested from the DNS root. The presence of DS records makes 

it possible to build a hierarchical chain of keys and verify the signatures. The DNS 

root key starts this chain and is used to authenticate the set of keys for the root 

zone. The root public key must be obtained through a trusted channel other than 

DNS. Typically, this key is built into the distribution package of the client 

application that performs the DNSSEC validation. 

Trusted confirmation of the absence of records is of particular interest. Suppose a 

malicious user wants to spoof responses about the test.ru zone by intercepting 



traffic. In that case, they could simulate the lack of DNSSEC support for the test.ru 

zone by substituting the name servers' responses related to DNSSEC, namely, a 

response with a DS record (either for the ru zone or for test.ru). If a zone does not 

support DNSSEC, then spoofing the answers related to it is not a problem: no 

signatures will need to be forged. In other words, the possibility of such an attack 

negates all the DNSSEC benefits: a malicious user only needs to simulate the 

absence of DNSSEC. 

Of course, DNSSEC has built-in protection mechanisms against this attack: the fact 

that a certain record is missing in the zone is also confirmed with the use of a 

digital signature. To do so, special schemes are used to sign the “intervals” 

between possible names and types of records confirming the fact that these 

intervals are “empty” indeed. In particular, signed records from a higher zone are 

required for a DNSSEC validating resolver to declare a zone “unsafe” (that is, 

without DNSSEC support). 

So, DNSSEC makes it possible to publish tamper-proof data to DNS. A DNSSEC-

capable client can verify the authenticity of the addressing information, 

regardless of the channel which was used to receive the information. 

 

 

Key management 

 

The modern version of DNSSEC accommodates the use of various digital signature 

algorithms, including ECDSA (the elliptic curve algorithm) and RSA. The global DNS 

root key still uses RSA, even though the asymmetric cryptography algorithm is 

now considered obsolete and ECDSA a better option. 

ECDSA uses keys derived from elliptic curve cryptography. ECDSA keys are much 

shorter than RSA keys, which means data packets required to transmit DNS 

responses are also smaller. In some cases, ECDSA offers ways for additional 

optimization of server-side operations (which, again, is due to shorter keys 

compared to RSA). There are also Russian digital signature algorithms using 

elliptic curves, known collectively as GOST Signature (GOST 34.10 family 

standards). 

GOST Signature for DNSSEC was proposed even before ECDSA, since for some 

time, it was almost the only elliptic curve cryptosystem that had the status of a 



state standard, with minimum potential problems related to patent protection. 

The ECDSA cryptosystem and the implementation of a number of cryptographic 

operations were potentially covered by the numerous Certicom patents (until 

2014-2018; now the most restrictive patents have expired). Problems arising from 

the protection of exclusive rights to the methods used for the implementation of 

cryptographic operations were definitely a major obstacle to using open 

standards. 

Therefore, GOST Signature has been supported in the DNSSEC protocol for a long 

time. However, the corresponding Russian standard has changed over the time 

that has passed since it was implemented. The old version of the signature, GOST 

R 34.10-2001, is no longer recommended for use. That standard has been 

replaced by a new one, GOST R 34.10-2012, and its use requires an RFC update. 

On the Technical Center of Internet side, Dmitry Belyavsky leads the work on new 

standards for IETF. The corresponding draft RFC, developed by Russian specialists, 

is now under discussion at IETF working groups. 

It should be noted that DNSSEC allows several different cryptosystems to be used 

to protect the same domain zone. This means Russia’s GOST cryptography can be 

used both separately and together with ECDSA or RSA. 

Since the DNS root zone was signed by DNSSEC in 2010, IANA is the operator of 

the key signing key for the DNS root zone (or “an organization performing the 

IANA naming function”). It makes sense because IANA is technically responsible 

for management of the DNS root zone. The RZ ZSK operator is Verisign, 

performing the function of generating the zone signing keys (ZSKs) on behalf of 

IANA and ICANN. Verisign signs the root zone file using the ZSKs, which in turn 

must be signed with the root key-signing key (the root KSK is the master key 

stored outside the DNS). Copies of the root KSK are stored with a high degree of 

protection, and access to them is strictly regulated. They have to be accessed 

whenever the root ZSK is replaced. 

Initially, the plan was for new ZSKs to be signed in a special face-to-face ceremony 

with trusted persons arriving at a secure vault from different parts of the world, 

including crypto officers who hold parts of the secret access keys, as well as 

observers. This procedure ruled out the possibility of unauthorized use of the 

keys, and generally enhanced confidence in the entire system. 

However, in 2020, face-to-face interactions had to be suspended due to the 

global situation, and a decision was made to generate several ZSK sets to create a 



reserve for the future. Instead of holding the next meeting offline, the previously 

generated keys were transferred to Verisign according to the ZSK rotation 

schedule. Perhaps face-to-face meetings will resume later, although the changed 

practice has questioned their actual importance and even necessity. 

The DNSSEC key hierarchy is similar to that of TLS certificates used by web 

browsers. The main difference is that DNSSEC now uses a single root, a single root 

key that logically matches the single root of the domain name system itself. With 

TLS, there are many root certificates built into web browsers: at least one root 

certificate and root key for each of the dozens of known and trusted root CAs. TLS 

certificates are also associated with domain names, since the purpose of a 

certificate is to make sure that a certain server key matches a certain domain 

name (less often, a certain IP address). It might seem that TLS certificates and the 

TLS protocol implement the same security mechanism as DNSSEC. 

Indeed, if a client (web browser) connects to a website whose IP address has been 

spoofed at the DNS level, the client will still be able to authenticate the server's 

TLS certificate and the name match. A CA signs the certificate, certifying that they 

have verified that it belongs to the owners of the domain name, meaning it 

validates the identity of the host. This is all true, but the scope of DNSSEC is much 

bigger.  

First, the DNSSEC protocol is applied in all other cases where DNS is used, not just 

when it comes to the web and web browsers. Second, even with a website and its 

A record (IP address), DNSSEC can detect spoofing (and thereby detect an attack) 

earlier than TLS. This greatly reduces the actual attack surface because the client, 

having detected the spoofing, will not even connect to the attacker's host. This is 

very important because if the attacker achieves a connection attempt, they can 

use more methods to succeed. Those include non-technology methods such as 

social engineering: for example, in a spear-phishing scam targeting a corporate 

system, users receive mail from “technical support” informing them about an 

alleged “TLS certificate replacement” on the website and asking them to open the 

corporate portal page and “agree with the browser warning.” 

Worse still, an attacker can somehow obtain a valid certificate for the name they 

are trying to attack. True, in DNSSEC, a leak of private keys is also possible; or, 

they can be replaced by intercepting the administrative control of the domain 

zone. But one has to agree that spoofing both TLS and DNSSEC is more difficult. 

Moreover, if an attacker obtains DNS control with sufficient rights to replace 



DNSSEC keys, then most likely they will be able to obtain a valid TLS certificate for 

the domain name as well (because the control mechanisms use DNS). But the 

opposite situation – the attacker obtaining the private key from the web server's 

TSL certificate – won’t allow DNS spoofing. 

Two other technologies are often compared to DNSSEC – DNS-over-TLS (DoT) and 

DNS-over-HTTPS (DoH). Both DoT and DoH are primarily aimed at hiding the 

content of DNS requests and authenticating nodes. These technologies actually 

have nothing to do with DNS records proper. In contrast, DNSSEC is not only 

based on publishing DNS records, but it also protects the data itself, not the 

channels to access it. DoH, and especially DoT, is a good complement to DNSSEC, 

but on the downside, it does not allow any additional information to be placed in 

DNS in a trusted way. Meanwhile, this feature of DNSSEC is exactly what 

significantly expands the capabilities of DNS. 

 

 

Prospects 

 

DNSSEC provides DNS with an efficient authentication mechanism for all records. 

This means it allows for the publication of data used by various applications in a 

trusted way. These could be cryptographic key fingerprints used in other 

protocols, the description of policies for issuing TLS certificates for the 

corresponding zone, etc. Naturally, the relevant records (SSHFP, TLSA, CAA and 

others) can be placed in DNS without using DNSSEC, but this feature helps avoid 

the spoofing of identifiers and parameters in these records. 

Unfortunately, DNSSEC support is not widespread yet. As of June 2021, .ru has DS 

records for some 5,500 domain zones, which is 0.1 percent. This is mainly due to 

the fact that the introduction of DNSSEC requires the modernization of the 

authoritative name servers and management tools, and very few are willing to 

perform the updates. 

 


